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Abstract4

Federal Emergency Management Administration 100-year flood risk maps are ex-5

panded across the state of Arizona using a random forest, machine learning classifi-6

cation utilizing eight topographic explanatory variables.7

Plain Language Summary8

Flood mapping across Arizona.9

1 Background10

A critical component of the Arizona Tri-University Recharge (ATUR) project is a11

state wide assessment of flooding potential. Initial efforts focused on a traditional12

suitability analysis approach, using the analytical hierarchy process (AHP) for multi-13

criterion decision making, largely based on the work by Aloui et al. (2024). These14

methods saw initial success, and are continuing to be developed and refined. How-15

ever, it became apparent that there were a number of shortcomings inherent in this16

approach which are not easily addressed.17

Firstly, the results of such an analysis are intrinsically linked to the data layers used,18

and the weighting schema determined by the AHP. As additional data sets became19

available, and alternate weighting schemas were tested we generated multiple ver-20

sions of mapped flood potential which did not necessarily agree with each other21

(Figure 1). In the absence of high quality ground-truthed data it was difficult to22

validate these results and it was not clear to the project team which version was the23

best. This underscores the need for expert involvement at every stage of AHP based24

analysis. While there is a wealth of hydrological expertise within the larger ATUR25

project, development and implementation of this process has largely been conducted26

by a GIS technician with marginal hydrologic knowledge, and it has been difficult to27

foster sustained buy-in from team members on this portion of the project.28

Furthermore, it was extremely difficult to develop a single generalized model that29

would be effective across the whole state. Because of the wide array of ecological30

and geologic conditions that are present across the state, variables that are impor-31

tant for flood risk in one region may not apply in other regions. Lastly, even if these32

technical issues could be overcome, there was still gaps in the input data layers,33

resulting in unclassified regions.34

While the traditional suitability analysis methods of assessing flood potential is still35

valuable to the project, and will be retained and developed further, the reality of36

these challenges lead us to reevaluate our overall approach and consider alternate37

methods. Work by Mudashiru et al. (2021) summarized the various methods used38

by other researchers in this field, which includes AHP based methods as well as39

physical modeling and machine learning applications. The machine learning methods40

utilized by Tehrany et al. (2019) appeared to be particularly relevant. Specifically,41

their use of topographic data only was particularly intriguing. These data sets are42

fully derived from digital elevation models (DEMs), which are easily accessible, and43

have full coverage over the study area. These findings lead to a renewed initiative to44

apply a machine learning based method towards the objective of a state wide flood45

map.46

2 Data & Methods47

2.1 Topography Data48

All explanatory variables for the model were derived from the NASA Shuttle Radar49

Topography Mission (SRTM) 30 m DEM. Slope, aspect, curvature, stream power50

index (SPI), topographic wetness index (TWI), and sediment transport index (STI)51

were all calculated in ArcGIS Pro (3.4.3). Slope, aspect and curvature were calcu-52

lated using the Surface Parameters tool (Spatial Analyst). SPI, TWI, and STI were53
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Figure 1: Side-by-side comparison of two versions of a flooding susceptibility analysis for
the San Pedro watershed showing subtle differences as the result of updated layers and
weighting schemas. Map A uses 9 input layers, while map B uses 8, removing one data
layer, and exchanging another. For full details of method differences see San Pedro Flood-
MAR, as well as Flood-MAR V2 (login required).

–3–

https://travisz09.github.io/SanPedro_Flood-MAR/
https://travisz09.github.io/SanPedro_Flood-MAR/
https://arizona.box.com/s/0pn7q3411aatq7mwohlk1t3a3a0edly2
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calculated as per Tehrany et al. (2019) using the Raster Calculator tool according to54

Equations 1-355

𝑆𝑃𝐼 = 𝐴𝑠 × 𝑡𝑎𝑛() (1)

𝑇 𝑊𝐼 = 𝑙𝑛 ( 𝐴𝑠
𝑡𝑎𝑛()) (2)

𝑆𝑇 𝐼 = ( 𝐴𝑠
22.13)

0.6
× ( 𝑠𝑖𝑛()

0.0896)
1.3

(3)

where As is the catchment area (m) and ß is the slope (radians).56

Similarly, Topographic Roughness Index (TRI) was calculated as per Tehrany et al.57

(2019) using a custom R (4.4.1) function with the package terra (1.7-78) according58

to Equation 459

𝑇 𝑅𝐼 = [∑(𝜒𝑖𝑗 − 𝜒00)2]0.5
(4)

where �ij is the elevation at coordinates (i, j) and �00 is the elevation at coordinates60

(0, 0) for a 3x3 focal neighborhood. The code used to calculate TRI is available on61

GitHub.62

2.2 Flooding Data63

Flood data used for training the model was obtained from the Federal Emergency64

Management Administration (FEMA) National Flood Hazards Layer, which pro-65

vides 100-year flood maps for many areas of the US. The data was manually down-66

loaded for each county in AZ from the FEMA data viewer (accessed 3/15/2025).67

Data layers were merged in ArcGIS Pro (3.4.3), and the vector data was converted68

to a raster with a 10 m resolution. Additionally, the FEMA data was reclassified69

to a binary output, either flooded or not flooded (during a 100-year flood event),70

eliminating superfluous details such as survey methods and flow depth (Figure 2).71

2.3 Google Earth Engine Preparation72

The machine learning model was performed in Google Earth Engine (GEE). The73

SRTM elevation data was access and clipped to the study area natively through74

GEE servers, all other data layers, including the study area shapefile, were uploaded75

as an asset to GEE prior to model implementation.76

2.4 Variable Collinearity77

Prior to modeling, the collinearity of the explanatory variables was explored using a78

series of pair-wise linear regressions (Figures A1-A36). 5,000 points (the maximum79

number of points which can be plotted in GEE) were randomly sampled across the80

study area for collinearity analysis. The collinearity of each pair-wise regression81

is summarized visually in Figure 3 using the R-squared statistic of each compari-82

son. While some relationships, e.g. slope and TWI (Figure A19), share a complex83

relationship that is not captured by a linear regression, the R-squared statistic is84

a simple indicator of collinearity which is readily understood. Although a formal85

variance inflation factor (VIF) analysis was not performed, efforts were made to86

limit model complexity by manually testing variable combinations, especially those87

that showed high degrees of collinearity, and at equivalent model accuracy, simpler88

models were preferred.89

–4–

https://github.com/travisz09/TopographicRoughnessIndex
https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd
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Figure 2: Simplified FEMA 100-year flood map for all counties in Arizona.
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Figure 3: Color coded R-squared statistic for each pair-wise linear regression (green =
high, red = low), representing the collinearity of each variable used for modeling.

2.5 Initial Model Testing and Development90

Many models were iteratively explored using several machine learning algorithms,91

various combinations of explanatory variables, and many hyperparameterization92

values. For all initial model trials the study area was reduced to the San Pedro93

watershed, a well characterized watershed with approx. 66% FEMA flood map cov-94

erage (visual estimate). A 70:30::training:testing data structure was adopted, and95

while a range of sampled points were tested, this ratio was maintained throughout.96

Model performance was primarily assessed through an overall accuracy score, with97

confusion matrix analysis performed for highly accurate models.98

Tested models included Classification and Regression Tree (CART, a.k.a Decision99

Tree), Random Forest (RF), and Support Vector Machine (SVM). Generally, CART100

classification produced very noisy results which tended to overestimate flood waters,101

and averaged around 79.5% accuracy (data not shown). SVM classification was too102

computationally demanding, even within the smaller study area of the San Pedro,103

and given the generous cloud computing resources of GEE. As a consequence SVM104

classification can not be evaluated, other than to say that it is inefficient and imple-105

mentation is impractical. RF classification proved to be the most promising method106

of classification, and the most effort was spent on developing that model.107

2.5.1 Random Forest Model Development108

Over 400 RF models were tested for the San Pedro watershed. Model optimization109

parameters tested included the number of trees, the number of sampling points110

(from 20,000 up to 60,000), and combinations of explanatory variables. Many RF111

models were tested simultaneously with between 5 to 100 trees using a custom GEE112

function modified from Nicolau et al. (2023). The referenced accuracy scores for113

preliminary models refers to the most accurate model, using the fewest number of114

trees. Tested RF models ranged from 73.9% to 87.4% (Table 1). The most accurate115

model tested used 35,000 sampling points, consisting of 30,000 dry land points (not116

flooded) and 5,000 flooded points and with all explanatory variables except for TRI,117

achieving a peak overall accuracy of 87.4% at 70 trees.118
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Table 2: The confusion matrix for the most accurate random forest classifier of the San
Pedro watershed, including overall, producer’s and consumer’s accuracy.

Table 1: Random Forest algorithm optimization and accuracy. All recorded sampling
points were grouped together before being partitioned into a 70:30::training:testing struc-
ture.

Variables
Sampling Points (dry
land, flooded) Trees Accuracy (%)

All 15000, 5000 50 79.2
All 20000, 5000 85 82
All 20000, 10000 85 73.9
All 25000, 5000 50 84.8
All 30000, 5000 45 87
All 30000, 10000 80 78.9
All 40000, 10000 50 82.1
All 50000, 10000 Error
No TRI 25000, 5000 90 84.9
No slope 25000, 5000 70 84.8
No TRI 30000, 5000 70 87.4
No TRI or STI 30000, 5000 40 87.2
No STI 30000, 5000 ?? 87.1
No elev 30000, 5000 90 86.3
No slope 30000, 5000 80 87.2
No aspec 30000, 5000 60 87
No curve 30000, 5000 40 87.1
No SPI 30000, 5000 70 87.1
No TWI 30000, 5000 40 87.1

Confusion matrix analysis for this model showed a much higher producers accuracy119

(98.6%) than consumers accuracy (88.1%; Table 2). While these results are still120

satisfactory, they reveal that the model is generally favoring dry land classification121

over flooded. This can be explained by the relative abundance of dry land pixels122

vs. flooded pixels, both in the sampling points and across the landscape. Qualita-123

tively, the model appeared to be overfit to stream channels. While many of the124

larger flood plains were effectively captured, flooded features generally appeared125

too narrow, especially along smaller tributaries. Additionally, the results were quite126

noisy, with noticeable speckling in both the dry and flooded regions (Figure 4 B).127

2.5.2 Post-Processing128

To clean up the RF classification, and further increase its overall accuracy, I post-129

processed the classification image using a two step process. Firstly, pixel “connected-130
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Figure 4: Side-by-side comparison of FEMA 100-year flood maps (A), raw random forest
classification (B), post-processed random forest classification (C), and classification errors
of the post-processed classification (D) for the lower San Pedro watershed.
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Table 3: The confusion matrix for the post-processed random forest classifier of the San
Pedro watershed, including overall, producer’s and consumer’s accuracy.

Table 4: The confusion matrix for the random forest classifier of the full ATUR study
area, encompassing Arizona, including overall, producer’s and consumer’s accuracy.

ness” was measured, with pixel groups of 20 or fewer connected pixels (D8) reclassi-131

fied to 0 (dry land). This process was very effective at removing the speckling, where132

small pockets were being incorrectly classified as flooded. Secondly, all remaining133

flooded areas were dilated using a focal maximum function using a square kernel134

with a 90 m radius (7x7 pixel neighborhood). This both removed noise within the135

flooded areas, and widened the flood zone along long, thin features, such as tribu-136

taries (Figure 4 C). This process did increase the overall rate of commission errors137

(incorrectly classifying as flooded), particularly along the banks of major floodplains,138

however the decreased rate of omission errors (incorrectly classifying as not flooded)139

more than made up for this fact, and the overall accuracy increased to 90.5% (Fig-140

ure 4 D; Table 3)141

2.6 Scaling up142

The chosen RF classification, with post-processing was then applied to the larger143

ATUR study area, encompassing AZ. The same number of sample points were used144

and they retained the same structure (i.e. dry, flooded, and training, testing), how-145

ever the sample locations were adjusted to the larger study area. The overall accu-146

racy of the full ATUR model output measured 88.2% (Table 4). While this overall147

accuracy was lower than the San Pedro model, and fell somewhat short of the hoped148

for 90%, it is still testing quite well. The model is particularly good at correctly149

identifying dry areas, with a producer’s accuracy of 98.2%, while it is unfortunately150

under-classifying flooded areas (1071 of 1491 flooded test points classified as dry).151

While this remains an area for improvement, it is as sufficiently well trained model152

to justify use in further analysis.153

2.7 Combining Data Sets154

Using the newly developed RF classification the FEMA flood map can be augmented155

and extended to continuous coverage of Arizona. Assuming that the FEMA data is156

the more accurate dataset, it is given priority. The RF data is then used where no157
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FEMA data exists. Additionally, classification error maps are generated as the differ-158

ence between the RF classification, and the FEMA classification. These data layers159

are available for use by the ATUR project participants in the associated ArcGIS160

online (AGOL) group.161

3 Conclusion162

A state-wide binary classification of flooded areas, for a 100-year flood event, has163

be generated through the combination of high quality FEMA data, and a machine164

learning RF classification algorithm used to complement and extend the FEMA data.165

The classification was carried out using 7 topographic explanatory variables, achiev-166

ing an overall accuracy of at least 86.9% (final accuracy assessment pending). These167

newly developed data layers are appropriate for use within the ATUR project, for168

such analysis as Flood-MAR. Further, I am unaware of any other continuous flood169

maps for the state of AZ, making this work novel and potentially useful outside of170

the ATUR group. While improvements could certainly be made to this model, ac-171

curacy approaching (or exceeding) 90% is laudable, and these datasets may warrant172

external publication, pending approval.173

Full project code available on GEE.174
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A 1: Linear regression analysis of flood risk (binary) and elevation (m) for 5,000 randomly
sampled points across the full study area, encompassing Arizona.

A 2: Linear regression analysis of flood risk (binary) and slope (°) for 5,000 randomly sam-
pled points across the full study area, encompassing Arizona.

A 3: Linear regression analysis of flood risk (binary) and aspect (°) for 5,000 randomly
sampled points across the full study area, encompassing Arizona.
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A 4: Linear regression analysis of flood risk (binary) and curvature for 5,000 randomly
sampled points across the full study area, encompassing Arizona.

A 5: Linear regression analysis of flood risk (binary) and stream power index (SPI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.
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A 6: Linear regression analysis of flood risk (binary) and topographic wetness index
(TWI) for 5,000 randomly sampled points across the full study area, encompassing Ari-
zona.

A 7: Linear regression analysis of flood risk (binary) and topographic roughness index
(TRI) for 5,000 randomly sampled points across the full study area, encompassing Ari-
zona.
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A 8: Linear regression analysis of flood risk (binary) and sediment transport index (STI)
for 5,000 randomly sampled points across the full study area, encompassing Arizona.

A 9: Linear regression analysis of elevation (m) and slope (°) for 5,000 randomly sampled
points across the full study area, encompassing Arizona.

A 10: Linear regression analysis of elevation (m) and aspect (°) for 5,000 randomly sam-
pled points across the full study area, encompassing Arizona.
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A 11: Linear regression analysis of elevation (m) and curvature for 5,000 randomly sam-
pled points across the full study area, encompassing Arizona.

A 12: Linear regression analysis of elevation (m) and stream power index (SPI) for 5,000
randomly sampled points across the full study area, encompassing Arizona.

A 13: Linear regression analysis of elevation (m) and topographic wetness index (TWI)
for 5,000 randomly sampled points across the full study area, encompassing Arizona.
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A 14: Linear regression analysis of elevation (m) and topographic roughness index (TRI)
for 5,000 randomly sampled points across the full study area, encompassing Arizona.

A 15: Linear regression analysis of elevation (m) and sediment transport index (STI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.

A 16: Linear regression analysis of slope (°) and aspect (°) for 5,000 randomly sampled
points across the full study area, encompassing Arizona.
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A 17: Linear regression analysis of slope (°) and curvature for 5,000 randomly sampled
points across the full study area, encompassing Arizona.

A 18: Linear regression analysis of slope (°) and stream power index (SPI) for 5,000 ran-
domly sampled points across the full study area, encompassing Arizona.

A 19: Linear regression analysis of slope (°) and topographic wetness index (TWI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.
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A 20: Linear regression analysis of slope (°) and topographic roughness index (TRI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.

A 21: Linear regression analysis of slope (°) and sediment transport index (STI) for 5,000
randomly sampled points across the full study area, encompassing Arizona.

A 22: Linear regression analysis of aspect (°) and curvature for 5,000 randomly sampled
points across the full study area, encompassing Arizona.
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A 23: Linear regression analysis of aspect (°) and stream power index (SPI) for 5,000 ran-
domly sampled points across the full study area, encompassing Arizona.

A 24: Linear regression analysis of aspect (°) and topographic wetness index (TWI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.

A 25: Linear regression analysis of aspect (°) and topographic roughness index (TRI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.
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A 26: Linear regression analysis of aspect (°) and sediment transport index (STI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.

A 27: Linear regression analysis of curvature and stream power index (SPI) for 5,000 ran-
domly sampled points across the full study area, encompassing Arizona.

A 28: Linear regression analysis of curvature and topographic wetness index (TWI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.
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A 29: Linear regression analysis of curvature and topographic roughness index (TRI) for
5,000 randomly sampled points across the full study area, encompassing Arizona.

A 30: Linear regression analysis of curvature and sediment transport index (STI) for 5,000
randomly sampled points across the full study area, encompassing Arizona.
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A 31: Linear regression analysis of stream power index (SPI) and topographic wetness
index (TWI) for 5,000 randomly sampled points across the full study area, encompassing
Arizona.

A 32: Linear regression analysis of stream power index (SPI) and topographic roughness
index (TRI) for 5,000 randomly sampled points across the full study area, encompassing
Arizona.
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A 33: Linear regression analysis of stream power index (SPI) and sediment transport in-
dex (STI) for 5,000 randomly sampled points across the full study area, encompassing
Arizona.

A 34: Linear regression analysis of topographic wetness index (TWI) and topographic
roughness index (TRI) for 5,000 randomly sampled points across the full study area, en-
compassing Arizona.
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A 35: Linear regression analysis of topographic wetness index (TRI) and sediment trans-
port index (STI) for 5,000 randomly sampled points across the full study area, encompass-
ing Arizona.

A 36: Linear regression analysis of topographic roughness index (TRI) and sediment
transport index (STI) for 5,000 randomly sampled points across the full study area, en-
compassing Arizona.
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